SLACKER INFORMATION R. SAlceda

LUCAS Engineering, Inc.

4205 FOX STREET DENVER, COLORADO 80216 Tel: 303-458-7460 CABLE CODE: LUCASENGRG

March 31, 1983 Revised Aug. 9, 1983

RECEIVED

HULLY SUGAR

SPECIFICATIONS

FOR

90" DIA. LIME SLAKER

HOLLY SUGAR CORPORATION

BRAWLEY FACTORY

GENERAL: These specifications describe a Rotary Lime Slaker in strict conformance with HOLLY SUGAR CORPORATION Inquiry dated March 16, 1983 (Requisition No. BY-1007-ED) and Holly Drawing No. A-90351-6.

The Slaker consists of a 90" diameter horizontal shell driven by a ring gear and rotating on steel tires supported by idler trunnions. Arrangement will be as shown by LUCAS ENGINEERING Drawing No. 72-953 enclosed.

OPERATING
The equipment proposed is designed to produce high quality Milk of PERFORMANCE:
Lime (M.O.L.) from normal calcined Lime Rock, without water burning or drowning. The internal agitating flights are interrupted to promote vigorous liquid circulation and set at a sufficiently low helix angle to prevent lifting of the solids above the liquid level.

Internal flights are arranged in four rows 90° apart, so that at least one row is immersed and agitating the M.O.L. at all times.

		CONCURRENT OPERATION	 TER-CURRENT PERATION
Milk	of Lime:		
	Apparent Density CaO, in % on Beets Production Rate Retention Time Outlet Temp. Reynolds No.	32°Bx 3.6% 280 gpm 2.6 min 180° F 6.9 x 10 ⁷	32°Bx 3.6% 280 gpm 2.6 min 212° F 7.3 x 10
	N _{Re} reqd for Turbulence	1 x 10 ⁴	1 x 10 ⁴

	CONCURRENT OPERATION	COUNTER-CURRENT OPERATION
Calcined Lime:		
Production Rate Bulk Density (dry) "" (hydrated) Volumetric Rate Inlet Solids/Liquid Ratio	325#/min 50#/cu. ft. 33#/cu. ft. 10 cu. ft/min 1:4	325#/min 50#/cu. ft. 33#/cu. ft. 10 cu. ft/min 1:4
Design Conveying Rate Residence Time Dross, % on Rock	3.0 ft/min 10 min 5%	3.0 ft/min 10 min 5%

MECHANICAL DESIGN:

The Slaker and all mechanical components have been conservatively designed to provide indefinite life. Individual components are as follows:

Rotating Shell	.3/8" Thk A-36 Plate
Tires	.100" O.D. x 94" ID x
	6" Face Width
Idler Trunnions	$.13\frac{1}{2}$ " 0.D. x
·	7" Face Width
Trunnion Shaft	.5" dia x 4" @ Brgs
Trunnion Bearings	.Timken Type "AP"
•	Class B (4½ x 8)
Ring Gear (AGMA Class 6)	.2 D.P. x 200 Teeth
•	x 5" Face Width
Pinion (AGMA Class 6)	.2 D.P. x 30 Teeth
	x 5½" Face Width
Thrust Rolls	

Mechanical Design parameters are:

	<u>Actual</u>	<u>Allowable</u>
Tire/Trunnion Loading	7275 1bs vs	20250 lbs
Trunnion Bearings, L ₁₀ Rated Life Trunnion Shaft Stress	32,500,000 hrs 1371 psi	N/A 25,000 psi
Pinion: Tooth Bending Surface Durability	12,154 psi	22,000 psi
burrace burability	9430 psi	50-60,000

The ring gear is mounted to the shell by means of double wedges which will be adjusted in the shop to 1/16" T.I.R. $(\pm 1/32$ ") and welded in position. The adjacent tire is located concentric with the gear by a machined pilot, so that pitch line contact of the gear and pinion is virtually independent of runout.

Sheet Three

The pinion is arranged to dip into a reservoir of "Extreme Pressure" lubricant, providing continuous lubrication for itself and the ring gear.

Continuous lubrication of the tires and trunnions is not considered necessary, especially in the dirty lime kiln area, although it can easily be provided at the customer's option.

DRIVE: The proposed Slaker is driven by the pinion mounted directly on the low-speed output shaft of the speed reducer, driven by a V-Belt Drive from an electric motor.

Drive components are:

Speed Reducer:

Manufacturer	Hansen
Type	JFN Concentric Shaft
Size	
Ratio (Actual)	25.0:1
Service Factor	
Low Speed Shaft:	
-	13,400 lbs. (Allowable)
	5,408 " (Actual)

V-Belt Drive:

Manufacturer	Dodge
Type	Dyna-V
Belts	Four-3V850
Driven Sheave	10.6 O.D. w/2" Taper-Lock Hub
Driving Sheave	5.6" O.D. w/1 5/8" Taper-Lock Hub

Motor:

Train	16 254 T		
Size.		15 H.P.	
Type		Horizontal	
Enclos	sure	TEFC	
Elec.	Characteristics	460V3ph 60 H	\mathbf{z}

PAINTING: Exterior surfaces, not machined, will be painted one coat shop primer.

Machined surfaces will be given one coat Rustoleum rust preventive
compound.

Sheet Four

SHIPPING AND ERECTION

Shipment will be made by contract motor freight carrier for delivery to installation site.

WEIGHTS:

Calculated Shipping Weights are:

Shell Assy with Tires and Ring Gear	17,800	lbs.
Trunnion Cradle, Drive End		
Trunnion Cradle, Idler End		
Speed Reducer	680	
Motor	162	
V-Belt Drive, w/Guard	130	

The following sequence of installation is recommended:

- 1. After setting slaker on trunnions, adjust thrust rollers to within 1/8" of thrust ring faces ($\frac{1}{2}$ " total float).
- 2. Check bearing of trunnion faces against tires with feeler gauges and adjust as necessary.
- 3. Install speed reducer and electric motor drive on shovel mount provided. Bring pinion into engagement with ring gear and adjust to .065 blacklash for preliminary tooth bearing.
- 4. Fill pinion reservoir with E.P. lubricant.
- 5. Set up dial indicator and jog ring gear one or more revolutions to locate maximum run-out, and bring that point to conjunction with pinion.
- 6. Increase engagement to .045 minimum backlash across teeth.
- 7. Rotate shell several revolutions, observing lubricant pattern for uniform bearing across tooth face and skew reducer as necessary to obtain same.

Sheet Five

- 8. During step No. 7 also observe behavior of tire against thrust rollers. Correct behavior is for slaker to float between the thrust rollers, never in contact for more than a fraction of a revolution of the slaker.
- 9. To correct one-directional float, apply lubricant to both tires and observe pattern following trunnion contact. Back of one bearing on each cradle to obtain uniform pattern (advancing other bearing is not recommended as it may reduce backlash to unacceptable minimums).
- 10. Securely lock all adjustment and observe at frequent intervals for proper operation during first 24 hours of operation, and once each shift thereafter.
- 11. Note: Shell will expand about $\frac{1}{4}$ " from 70 F ambient to operating tempature. Tires should be centered on trunnions when operating at normal rate.

* * *